
Optimizing a GPU-parallelized Ant Colony
Metaheuristic by Parameter Tuning

Andrey Borisenko1 and Sergei Gorlatch2

1 Tambov State Technical University, Russia
borisenko@mail.gaps.tstu.ru

2 University of Muenster, Germany,
gorlatch@uni-muenster.de

Abstract. We address the problem of accelerating the GPU-parallelized
Ant Colony Optimization (ACO) metaheuristic used for an important
class of optimization problems – design of multiproduct batch plants,
with a particular use case of a Chemical-Engineering System (CES). We
propose and implement a novel approach to ACO’s parameter tuning,
with the following advantages compared to previous work: we accelerate
tuning by using GPU, and we do not require additional constructs like
function mapping in fuzzy logic, algorithms for online-tuning, etc. We
report our experimental results that confirm the efficiency of parameter
tuning and the advantages of our approach.

Keywords: constraint satisfaction problem · ant colony optimization ·
tuning metaheuristics · parallel metaheuristics · GPU computing · multi-
product batch plant design.

1 Motivation and Related Work

The Ant Colony Optimization (ACO) metaheuristic is a popular approach to
solving optimization problems. It can be viewed as a multi-agent system in which
agents (ants) interact with each other in order to reach a global goal [10]. ACO
follows the idea of collective intelligence in colonies of ants: the ants cooperatively
search for food and bring this food to their nest. While walking between food
sources and the nest, ants deposit a chemical substance called pheromone on
their path. The pheromone is used to find the shortest path from their nest to
food. Parameters of ACO determine the probability with which ants follow the
pheromone deposited by previous ants, and how fast the pheromone evaporates.

We apply ACO to an important class of real-world optimization problems
– optimal design of multiproduct batch plants, with a particular use case of a
Chemical-Engineering System (CES). Such a system is a set of equipment units
(reactors, tanks, filters, dryers etc.) which manufacture products, and the prob-
lem is finding the optimal number of units at processing stages and their main
sizes for the given input that includes: demand for each product of assortment,
production horizon, accessible equipment set, etc. This problem is NP-hard, i.e.,
the time to solve a problem instance grows exponentially with the instance size.



2 Andrey Borisenko and Sergei Gorlatch

Therefore, metaheuristics are often the only feasible way to obtain good-quality
solutions at acceptable computational cost [11]. In our previous work [4], we de-
velop a hybrid parallel algorithm consisting of two metaheuristics: 1) ACO finds
an initial soluting of the Constraint Satisfaction Problem (CSP); 2) this initial so-
lution is then optimized using Simulated Annealing (SA). The hybrid ACO+SA
algorithm is parallelized for Graphics Processing Units (GPU) and successfully
solves the design optimization problem for CES of size up to 1216 ≈ 1017 vari-
ants; it demonstrates a significant time saving as compared to the traditional
branch-and-bound optimization method.

In this paper, we aim at further acceleration of the GPU-parallelized ACO
method, in order to apply it to even larger sizes of problems that arise in practice:
already starting with the size 1216, the run time of the original algorithm becomes
prohibitively high despite the use of a highly parallel GPU. Our approach is to
use the additional performance potential offered by the tunable parameters of
the ACO algorithm.

A significant amount of work has been devoted to tuning ACO parameters [2]
that has proven to be a hard problem [11, 24].

The approaches to parameters tuning can roughly be divided into offline
versus online procedures. A tuning framework [25] is based on the sequential
optimization of perturbed regression models. Paper [1] presents a methodol-
ogy combining statistical and artificial intelligence methods in the fine-tuning of
metaheuristics. Paper [21] uses a fuzzy system for parameter adaptation in the
ACO metaheuristic. In [23], the problem of finding the parameters of a meta-
heuristic algorithm is formulated as a meta-optimization problem solved by an
evolutionary metaheuristic. An enhanced ACO with dynamic mutation and ad
hoc initialization for generating the initial ant solutions to improve the accu-
racy of fuzzy system design is proposed in [8]. Paper [7] explores a new fuzzy
approach for diversity control in ACO. In [12], a parameter tuning methodology
for metaheuristics based on the design of experiments is proposed. Paper [13]
uses a Particle Swarm Optimization (PSO) algorithm to optimize the ACO pa-
rameters.

We propose and implement a novel approach to parameter tuning for an ACO
algorithm that solves the CSP (Constraint Satisfaction Problem) part of our
global problem. The main differences of the proposed approach to the previous
work are as follows. By tuning for CSP, rather than for the optimization problem
as in [17, 21], we can apply frequency analysis. For calculating how often values
occur within a range of values, we do not need any specific and non-obvious in-
formation, like functions mapping in fuzzy logic, an algorithm for online-tuning,
etc. [7, 8, 21]. The parallelization of the algorithm and the use of modern GPUs
allow us to conduct a large number of computational experiments to accumulate
statistical data in a short time. An advantage is also that the found optimal
values of parameters for can be used for both parallel and sequential versions
of the algorithm. Summarizing, the advantages of our approach as compared
to previous work are two-fold: 1) we exploit the computation power of GPU in



Ant Colony Metaheuristic Tuning 3

the tuning process, and 2) we do not rely on any additional information like
functions mapping in fuzzy logic, an algorithm for online-tuning, etc.

In the remainder of the paper, Section 2 outlines the CES optimization prob-
lem and its GPU-implementation. In Section 3, we analyze our ACO algorithm
for CSP problem and the roles of its parameters, and we describe our novel
methodology of ACO parameters tuning. In Section 4, we report our experimen-
tal results that confirm the advantages of our approach, and Section 5 concludes.

2 GPU-Algorithm for Designing Multi-Product Plants

Our application use case is designing a Chemical-Engineering System (CES) – a
set of equipment (reactors, tanks, filters, dryers etc.) for manufacturing diverse
products. Assuming that the number of units at every stage of CES is fixed, the
problem can be formulated as follows (for a detailed formulation, see [3]). A CES
consists of a sequence of I processing stages; i-th stage can be equipped with
equipment units from a finite setXi, with Ji being the number of equipment units
variants in Xi. The goal is to find the optimal number of units at stages and their
main sizes; the input data are: production horizon, demand for each product,
available equipment, etc. Each system’s variant Ωe has to be in an operable
condition (compatibility constraint) expressed by function S: S(Ωe) = 0. If Tmax
is the total available time horizon, then an operable variant of a CES must also
satisfy a processing time constraint : T (Ωe) ≤ Tmax.

Fig. 1. Example: A Simple Chemical-Engineering System (CES)

Figure 1 shows an example CES consisting of 4 stages (I = 4), where each
stage can be equipped with 2 devices (J1 = J2 = J3 = J4 = 2); the number of
all possible system variants in this case is 24 = 16. The optimization works on
the search tree, in which each path from the root to one of the leaves in this tree
corresponds to a candidate solution of the optimization problem.



4 Andrey Borisenko and Sergei Gorlatch

In [3], we create a hybrid approach to optimizing CES; it combines two meta-
heuristics – Ant Colony Optimization (ACO) and Simulated Annealing (SA). We
parallelize and implement it on a CPU-GPU system using CUDA [19] and we
show that it is preferable to the popular Branch-and-Bound (B&B) method [5].
In our approach, the solution of the optimization problem is divided into two
stages: (1) construct a feasible (i.e., functionally operative CES variant) initial
solution using ACO; (2) improve this feasible solution using SA. While for classi-
cal optimization problems, e.g., Traveling Salesman Problem (TSP), it is possible
to use a random initial solution [17], in our case the random initialization is un-
acceptable, because the compatibility and the processing time constraints must
be satisfied. Our search for a feasible solution in the first stage is a Constraint
Satisfaction Problem (CSP) [26] which consists in finding an operable variant
of a CES, where both the compatibility constraint and the processing time con-
straint are satisfied. For solving this problem, we use ACO.

In our parallel implementation on a GPU [3], the ACO kernel function
searches for the first feasible solution using the Multiple Ant Colonies approach [9]:
all colonies work as threads in parallel to solve a problem independently.

1 AntColonyOptimization ()

2 { isFound = false; /* repeat while solution not found */

3 while(! isFound && iterCounter < maxIterNumber){

4 Initialize (); /* initialize pheromone value */

5 foreach(ant in colony){/* colony has M ants */

6 ConstructSolution(alpha , beta);}

7 if(isFound) return; /* if solution is found , then end */

8 PheromoneUpdate (); /* update pheromone */

9 EvaporatePheromone(rho);}

Listing 1. The pseudocode of ACO algorithm.

Listing 1 shows the pseudocode of our ACO algorithm for the CES optimiza-
tion problem. This code is executed as kernel in a thread for each ant colony.
The number of ants in the colony is the algorithm parameter which determines
the trade-off between the number of iterations and the breadth of the search at
each iteration: the larger the number of ants per iteration, the fewer iterations
are needed in ACO [24]. The local iteration counter is used by each thread as a
nonstop operation protection (line 3): if ants in this thread cannot find the solu-
tion after maxIterNumber iterations (which is in principle possible for stochastic
algorithms), then the thread terminates.

Up to now, most improvement work for ACO has concentrated on the tour
construction and pheromone update. But there is also a question how to de-
cide the termination condition of ACO algorithms in practice [29]. The possible
variants of termination condition include: (1) the algorithm has found a solution
within a predefined distance from a lower bound on the optimal solution quality;
(2) a maximum number of tour constructions or a maximum number of algo-
rithm iterations has been reached; (3) a maximum CPU time has been spent;



Ant Colony Metaheuristic Tuning 5

(4) the algorithm shows stagnation behaviour [29]. These variants have short-
comings: e.g., we may not know the optimal solution, so (1) will lose the effect
in the algorithm, while (2) and (3) are often not economical [29]. We use a com-
bination of termination variants (1) and (2); they are good in our case, because
for CSP, it is clear when constraints are fulfilled and when not. According to
recommendations in [28, 29] and our previous work we use maxIterCount=100.

The first potential candidate ACO parameter for tuning in Listing 1 could be
the size M of the ant colony. However, different sizes of colonies would adversely
affect the GPU-algorithm, because of divergent branches and memory operations
that cause uncoalesced accesses or bank conflicts [5, 6]. The NVIDIA Streaming
Multiprocessors (SMs) only get one instruction at a time and all CUDA cores
execute the same instruction. Threads within a warp (a group of 32 threads, that
are used in hardware to coalesce memory access and instruction dispatch) must
execute the same instruction at each cycle. The most common code construct
that can cause thread divergence is branching in an if-then-else statement: it can
hurt performance due to a lower utilization of the processing elements, which
cannot be compensated for via increased amount of parallelism [14]. To reduce
this divergence, we use one value of M for all threads.

As confirmed by numerous experiments in previous work [24, 18, 22] and our
own work [4], a good approximation for the number of ants in a colony is M =
100, so we use this value as default in all our experiments described in this paper.

We now turn to other tunable parameters of ACO which are the subject
in this work. Ants in Listing 1 all behave in a similar way: every ant moves
from the top of the tree-structured search space to the bottom. Once the ant
selects a node r = ni,j at tree level i, it can pick the next child node s =
ni+1,j . The tour of an ant ends in the leaves of the tree (level I); each path
corresponds to a potential solution of the problem. The ant transition from node
r to s is probabilistically biased by two values: pheromone trail τrs and heuristic
information ηrs as follows: prs = ταrs · ηβrs/

∑
k∈Cr

(ταrk · η
β
rk), where Cr is the set

of child nodes for r [10, 27], and k are indices of these nodes. The evaporation
(line 9 in Listing 1) is performed at a constant rate ρ at the end of each iteration.
It allows the ant colony to avoid an unlimited increase of the pheromone value
and to ”forget” poor choices made previously [24]. We implement this by the
assignment: τrs = ρ · τrs, where ρ ∈ [0, 1] is the trail persistence parameter. In
calculating heuristic information, we make a unit which satisfies the constraint
for the beginning part of the CES and larger main size more preferable than a
unit with the unsatisfied compatibility constraint and smaller main size.

We observe that parameters α and β influence the pheromone value and
heuristic value, respectively. They control the relative importance of the pheromone
trails and the heuristic information, as we explain in the following. We use the
following rule for the pheromone update : τrs = τrs + Q/

∑M
m=1 Lm, where Q

is some constant and Lm is the tour length of the m-th ant, M is the swarm
size. The smaller is the value of Lm the larger is the value added to the previous
pheromone value. We use Lm as a fitness value that indicates how close is a
given solution to achieving the required goals.



6 Andrey Borisenko and Sergei Gorlatch

3 ACO Parameter Tuning

For our target applications, we solve the constraint satisfaction problem (CSP),
rather than the optimization problem as in previous work. A specific feature of
our CSP is that only the existence of a valid solution is required. The quality
criterion is the frequency of feasible solutions for particular parameters values.
We use offline tuning in terms of [24] to configure the ACO parameters used to
solve the CSP. Our objective function is the algorithm run time. Since ACO is
a probability-based algorithm, its results are different if run multiple times on
the same instance of a problem, with varying run time. So, in order to achieve
reliable results, we run each instance multiple times and take the average value.

3.1 Choosing parameters for tuning

In the case of CES, we tune the following three parameters of ACO.
The Information Elicitation Factor α reflects the importance of the pheromone

accumulation with regard to the ants’ path selection. If α is large, the ants tend
to choose the same path as the preceding ants, resulting in a stronger coopera-
tion among the ants [16]. Although the convergence speed of ACO in this case
increases, it is likely for the algorithm to fall into a locally optimal solution, i.e.
large α reduces the global search ability. Conversely, if α is small, the conver-
gence speed of the ACO is slowed down, although of the fact that the global
search ability of the algorithm can be improved.

The Expected Heuristic Factor β represents the relative importance of the
mutual ants’ visibility, i.e., it reflects the importance of the heuristic information
with regard to the ants’ path selection. If the value is very large, the probability
of a state transition is close to that of a greedy algorithm. If β is small, the
heuristic information has virtually no effect on the path selection, which may
lead ACO to fall into stagnation or a local optimum.

The third parameter, Pheromone Evaporation Rate ρ ∈ [0, 1] regulates the
degree of the decrease in pheromone level in trails. If ρ is high (near to 1) then
pheromone values will persist longer, while low values of ρ (near to 0) allow
forgetting quickly of previous choices and, hence, allow faster adaptation to
changes [24]. In other words, smaller ρ reduces the global search ability of ACO,
is while larger, ρ improves this ability but limits the convergence speed.

3.2 Our tuning method: the idea

For tuning parameters α, β and ρ of parallel ACO, we use a statistical analysis
of the experimental data obtained as a result of computational experiments on
the CPU-GPU system. The application code for a CPU-GPU systems consists
of a sequential code (host code executed on the CPU) that invokes hundreds or
thousands of parallel threads on the device (GPU), where threads execute the
kernel code shown in Listing 1. If some thread finds a solution of CSP then all
threads finish their work. With an increasing number of threads, the probability
of finding a solution increases, and, therefore, the search time is typically reduced.



Ant Colony Metaheuristic Tuning 7

Fig. 2. General method of ACO parameter tuning.

Figure 2 shows the main steps of our tuning method, as follows: 1) CPU reads
the input data (number of CES stages I, number of devices J[I], production
horizon Tmax etc.) and starts on the GPU the parameter initialization α, β and
ρ; 2) GPU initializes ACO parameters by one of approaches described below; 3)
GPU starts the kernel function of Listing 1; 4) the ACO kernel searches for the
first feasible solution – the initial CES-variant; if some thread finds a solution
then all threads finish their work; 5) a if solution is not found, repeat step 2
or 3 depending on the approach; otherwise CPU receives the obtained feasible
solution and records results for further processing.

(a) Random.

(b) Constant. (c) Multi-Constant

Fig. 3. Approaches for ACO-parameters tuning.



8 Andrey Borisenko and Sergei Gorlatch

Figure 3 shows that within the general tuning method consisting of steps 1) –
5), we distinguish three particular approaches to parameter tuning Random 3a),
Constant Approach 3b) and Multi-Constant 3c), as follows.

Random Approach In the Random Approach, algorithm parameters are ini-
tialized in step 2 by uniformly distributed random values from the intervals
[αa, αb], [βa, βb], [ρa, ρb]. We set the bounds of these intervals as recommended
in literature, e.g. [15]. We use high-performance, GPU-accelerated random num-
ber generator from NVIDIA’s native cuRAND library (CUDA RAndom Number
Generation) [20]. Function curand_uniform() returns a uniformly distributed
value in the interval (0.0, 1.0]. We generate random numbers within a specified
interval (a, b] as follows: rnd(a,b) = curand_uniform() * (b-a) + a. So, the
SET() function for the Random approach reads as in Listing 2.

1 __global__ void SET() {

2 ... /* obtaining thread identifier */

3 threadID = blockDim.x * blockIdx.x + threadIdx.x;

4 alpha[threadID] = rnd(alpha_a , alpha_b);

5 beta[threadID] = rnd(beta_a , beta_b);

6 rho[threadID] = rnd(rho_a , rho_b); ...}

Listing 2. Random Approach: the SET() pseudocode.

If a particular combination of parameter values produces a feasible solution
then these values are saved for the further processing. This way, we obtain a
set of triples of parameter values α, β and ρ, for which ACO finds feasible
solutions. If a feasible solution in step 4 of the Random approach is not found
after maxIterNumber iterations then the approach goes to step 2 of Figure 2.

Constant Approach The Constant approach, see Figure 3b) differs from the
Random: all threads use the same values α, β and ρ for all threads (see Listing 3).

1 __global__ void SET() {

2 ... /* obtaining thread identifier */

3 threadID = blockDim.x * blockIdx.x + threadIdx.x;

4 alpha[threadID] = const_alpha;

5 beta[threadID] = const_beta;

6 rho[threadID] = const_rho; ...}

Listing 3. Constant approach: the SET() kernel pseudocode.

We obtain the starting values on the basis of a frequency analysis of the set of
α, β and ρ obtained using, for example, the Random approach. In the following
iterative process, we obtain a set of triples of parameter values α, β and ρ, for



Ant Colony Metaheuristic Tuning 9

which ACO finds feasible solutions. If a feasible solution is not found in step 2
after maxIterNumber iterations then we proceed to step 3 of Figure 2.

Multi-Constant Approach In the Multi-Constant Approach (see Figure 3c),
all threads use different initial values of α, β and ρ for all threads.

1 __global__ void SET() {

2 ... /* obtaining thread identifier */

3 threadID = blockDim.x * blockIdx.x + threadIdx.x;

4 alpha[threadID] = const_alpha[threadID ];

5 beta[threadID] = const_beta[threadID ];

6 rho[threadID] = const_rho[threadID ]); ... }

Listing 4. Multi-constant approach: the SET() pseudocode.

In this case, parallel ACO algorithm with a Multi-Constant approach can
be viewed as ”learning” from the random parameter tuning, since only those
triples of the parameters α, β and ρ are saved for which the solution was found.
If the Multi-const approach does not find a feasible solution in maxIterNumber

iterations then it goes to step 3.

4 Experimental Evaluation

Our experiments are conducted on a hybrid system comprising: 1) a CPU: Intel
Xeon Gold 5118, 12 cores with Hyper-Threading, 2.3 GHz with 192 GB RAM,
and 2) a GPU: NVIDIA Tesla V100-SXM2-16GB with 80 multiprocessors, each
with 64 CUDA cores (total 5 120 CUDA cores), GPU max clock rate 1.53 GHz,
16 GB of global memory. We use CentOS Linux release 7.5.1804, NVIDIA Driver
version 410.72, CUDA version 10.0 and GNU C++ Compiler version 6.4.0. On
the GPU we employ 5 120 threads as the number of CUDA cores for Tesla v100.

As our test case, we evaluate the use of ACO for designing a CES consisting of
16 processing stages with 11 to 20 variants of devices at every stage (in total from
1116 ≈ 1017 up to 2016 ≈ 1021 CES variants). Note that this size is significantly
larger than was possible in our previous work [4] without parameter tuning.

In the experiments, for each size of the problem from 1116 to 2016 (total 10
series of experiments), the algorithm is launched 100 times. For each launch,
the run time for finding a feasible solution is measured, the average run time is
calculated, and the corresponding values of α, β and ρ are recorded.

Random approach For the first series of experiments, values of α and β are
set using a random uniform distribution in range (0, 2], and ρ in range (0, 1], as
recommended in [15]. After the entire series of experiments, we obtain 10 ·100 =
1 000 triples of values α, β and ρ with the problem sizes for which solutions were
found. The total run time spent by the GPU for the first series of experiments
with the Random approach is 50 575 sec ≈ 14 hr.



10 Andrey Borisenko and Sergei Gorlatch

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1116 1216 1316 1416 1516 1616 1716 1816 1916 2016

P
ro

g
ra

m
 r

u
n
 t

im
e
, 

se
c

CES variants count (problem complexity)

α ∈ (0.0, 2.0], β ∈ (0.0, 2.0], ρ ∈ (0.0, 1.0]

(a) Runtime.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Fr
e
q
u
e
n
cy

Interval

α ∈ (0.0, 2.0]
β ∈ (0.0, 2.0]
ρ ∈ (0.0, 1.0]

(b) Frequency.

Fig. 4. Random approach for ACO-parameters tuning. First iteration.

Figure 4a) shows the average run time of solving the optimization problem
depending on the problem size. Figure 4b) shows the frequency of the found
feasible solutions represented as histograms for different intervals/ranges of pa-
rameter values. We observe from the histograms that ≈ 90% of the solutions
are obtained when the ACO parameters are in the intervals: α ∈ (0.0, 1.2],
β ∈ (0.1, 1.2], ρ ∈ (0.2, 1.0].

Our idea is to stepwise reduce the intervals for α, β, ρ by moving to values
where feasible solutions are more frequent. Therefore, we repeat the procedure
as above to obtain new 1 000 solutions with the reduced parameter ranges, and
again analyze the frequency of solutions. We repeat this process (search for
1 000 solutions – frequency analysis – correction of ACO-parameters intervals)
altogether 7 times. After these 7 repetitions, the parameter ranges narrow to a
single point: α = 0.2, β = 0.5, ρ = 0.9. We use it as the ACO parameter values
for Constant Approach in Subsection 4.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1116 1216 1316 1416 1516 1616 1716 1816 1916 2016

P
ro

g
ra

m
 r

u
n
 t

im
e
, 

se
c

CES variants count (problem complexity)

α ∈ (0.0, 2.0], β ∈ (0.0, 2.0], ρ ∈ (0.0, 1.0]
α ∈ (0.0, 1.2], β ∈ (0.1, 1.2], ρ ∈ (0.2, 1.0]
α ∈ (0.0, 0.8], β ∈ (0.1, 1.1], ρ ∈ (0.3, 1.0]
α ∈ (0.0, 0.6], β ∈ (0.2, 1.1], ρ ∈ (0.4, 1.0]
α ∈ (0.0, 0.5], β ∈ (0.2, 0.9], ρ ∈ (0.5, 1.0]
α ∈ (0.0, 0.4], β ∈ (0.2, 0.8], ρ ∈ (0.6, 1.0]
α ∈ (0.1, 0.3], β ∈ (0.3, 0.7], ρ ∈ (0.8, 1.0]

(a) Runtime.

 0

 100

 200

 300

 400

 500

 600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Fr
e
q
u
e
n
cy

Interval

α ∈ (0.1, 0.3]
β ∈ (0.3, 0.7]
ρ ∈ (0.8, 1.0]

(b) Frequency.

Fig. 5. Random Approach for ACO-parameters tuning.

Figure 5a) shows the change in the average run time of the algorithm for
problems of various dimensions 1116 to 2016. Figure 6 shows the run time for



Ant Colony Metaheuristic Tuning 11

the parameter triple α = 0.2, β = 0.5, ρ = 0.9, together with other results for
the Constant approach. Figure 5b) shows the frequency achieved after the final,
7th iteration of experiments for α ∈ (0.1, 0.3], β ∈ (0.3, 0.7], ρ ∈ (0.8, 1.0].

Summarizing the results achieved by the Random approach in our exper-
iments, we can conlclude that, due to the parameter tuning, the average run
time of the algorithm decreased by ≈ 29 times (from ≈ 50 sec for α ∈ (0.0, 2.0],
β ∈ (0.0, 2.0] and ρ ∈ (0.0, 1.0] to ≈ 1.7 sec for α ∈ (0.1, 0.3], β ∈ (0.3, 0.7],
ρ ∈ (0.8, 1.0]). The total tuning time spent by the GPU for all seven iterations
of experiments was 83 116 sec ≈ 23 hr. In the sequel, we use thus obtained values
of α, β, ρ for problems of different size as initial values in the Constant and
Multi-constant approach.

Constant approach In the Constant approach, each GPU thread uses the
same triple of values α, β, ρ that was obtained by the Random approach.

 0

 20

 40

 60

 80

 100

 120

1116 1216 1316 1416 1516 1616 1716 1816 1916 2016

P
ro

g
ra

m
 r

u
n
 t

im
e
, 

se
c

CES variants count (problem complexity)

α = 0.4, β = 0.6, ρ = 0.9
α = 0.31, β = 0.54, ρ = 0.65
α = 0.1, β = 0.3, ρ = 0.9
α = 0.2, β = 0.5, ρ = 0.9

Fig. 6. Constant approach: Run time de-
pending on the problem size.

 0

 1

 2

 3

 4

 5

 6

 7

1116 1216 1316 1416 1516 1616 1716 1816 1916 2016

P
ro

g
ra

m
 r

u
n
 t

im
e
, 

se
c

CES variants count (problem complexity)

100 of (α, β, ρ) for 1116

200 of (α, β, ρ) for 1116 to 1216

500 of (α, β, ρ) for 1116 to 1516

800 of (α, β, ρ) for 1116 to 1816

1000 of (α, β, ρ) for 1116 to 2016

Fig. 7. Multi-constant Approach: Run
time depending on the problem size.

Figure 6 shows the results. The first triple of parameter values α = 0.4, β =
0.6, ρ = 0.9 are the same which we empirically used in our previous articles [3,
4] – we present them here for comparison.

As we described in the previous subsection, after the first series of exper-
iments with the Random approach we obtained first 1000 triples of α, β, ρ
values. An interesting finding of our experiments is that, although it may seem
intuitively apparent that the average values of the found parameter values would
serve as good candidates for parameter values, this hypothesis was not confirmed.
Indeed, the second triple in Figure 6 (α = 0.31, β = 0.54, ρ = 0.65) is calculated
as the average values of the parameter intervals obtained after the first iteration
of the Random approach. We observe in the figure that these values seriously
worsened the run time of the algorithm by ≈ 1.4 times.

The third triple α = 0.1, β = 0.3, ρ = 0.9 in Figure 6 is set based on the
analysis of the data frequency shown in Figure 4b) after the first iteration of the
Random approach (we take the values that provide the highest frequency). This
reduces the run time by ≈ 8.5 times. The best, fourth triple of values α = 0.2,
β = 0.5, ρ = 0.9 in Figure 6 is obtained after seven iterations of the Random
approach. This triple reduces the run time of the algorithm by ≈ 35 times. The
tuning time spent by the GPU is the same 23 hr as in the Random approach.



12 Andrey Borisenko and Sergei Gorlatch

Multi-constant approach The Multi-constant approach differs from the pre-
viously discussed Constant approach in that each GPU thread uses its own triple
of constants α, β, ρ that are obtained as a result of the first series of the Ran-
dom approach. The approach yields a total of 1 000 triples of ACO-parameters
for problems of various sizes from 1116 up to 2016, for which feasible solutions
are obtained. When running the program on the GPU (for our case on the Tesla
v100 we use 5 120 threads, which corresponds to the number of CUDA cores for
this GPU-model), the initialization of the algorithm parameters is performed
cyclically. If we have the set of 100 triples of algorithm parameters, then on the
GPU, after every 100 GPU threads, the values of algorithm parameters will be
repeated, for set of 200 triples repetition values will be every 200 GPU threads,
etc. For set of 1 000 triples of parameters, the values of the algorithm parameters
will be repeated on every 1 000 GPU threads.

Figure 7 shows the results of using the Multi-const approach. The worst run
time (especially for the maximum problem complexity 2016) corresponds to the
set of 100 triples, the best run time corresponds to the set of 1 000 triples. The
average run time of the algorithm starting from the set of 200 triples differs
from the runtime of the algorithm for the maximum set of 1 000 triples by only a
factor of ≈ 1.16 (2.75 sec vs. 2.37 sec). The search time for the set of 1 000 triples
is equal to the time of the first iteration of random approach with α ∈ (0, 2],
β ∈ (0, 2] and ρ ∈ (0, 1] is 50 575 sec ≈ 14 hr, and the search time for the set of
200 triples with the same random approach for a problem complexity 1116+1216

is 3 282 sec ≈ 54 min, which is 15.4 times faster.

Comparison of tuning approaches Figure 8 compares the best run time
results obtained by each of our three tuning approaches. For the Multi-constant
approach, we compare also to the variant with 200 triples that provides still
acceptable results achieved in a significantly shorter tuning time.

 0

 1

 2

 3

 4

 5

1116 1216 1316 1416 1516 1616 1716 1816 1916 2016

P
ro

g
ra

m
 r

u
n
 t

im
e
, 

se
c

CES variants count (problem complexity)

Multi Constant. 200 of (α, β, ρ) for 1116 to 1216

Multi Constant. 1000 of (α, β, ρ) for 1116 to 2016

Random. α ∈ (0.1, 0.3], β ∈ (0.3, 0.7], ρ ∈ (0.8, 1.0]
Constant. α = 0.2, β = 0.5, ρ = 0.9

(a) Best Runtimes.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

Random Constant Multi Const 1000 Multi Const 200

In
v
e
st

ig
a
ti

o
n
 t

im
e
, 

se
c

ACO parameters tuning approach

(b) Investigation Time.

Fig. 8. Comparison of Approaches.

We observe in Figure 8a) that the fastest run time is achieved by using the
Constant approach with constant parameter values α = 0.2, β = 0.5, ρ = 0.9
(average execution time ≈ 1.1 sec). Figure 8b) shows that the tuning time for
the most economical Multi-const approach with 200 samples (≈ 54 min) is 25
times shorter, while the resulting run time of the optimization process is only
≈ 2.5 times slower.



Ant Colony Metaheuristic Tuning 13

5 Conclusion

Our contribution is a new set of three approaches to parameter tuning of the
GPU-parallelized Ant Colonies Optimization (ACO) metaheuristic. The advan-
tage of our approaches is that they work for different metaheuristics and different
optimization problems. As a particular demonstration, this paper describes the
use case when ACO is used for solving the Constraint Satisfaction Problem
(CSP) in the process of optimizing the multiproduct batch plants design. Our
three tuning approaches – Random, Const and Multi-Const – proceed by using
a statistical analysis of solution frequences in particular intervals of parameter
values. By stepwise narrowing these intervals, we arrive at the intervals or even
single parameter values that provide good soltions in short time.

Using modern high-performance CPU-GPU systems, it is possible to conduct
a large number of computational experiments (e.g., overnight), and to use their
results for a statistical frequency analysis. We demonstrate that the user can
choose between longer experiments with a very good quality of solutions and
shorter experiments that still provide a acceptable level of quality. This shows
that it is possible to use the parameters values obtained for problems of a small
complexity for solving problems of a large complexity. It should be noted that
despite the relatively short time of the algorithm (minutes) without tuning on
high-performance equipment (Tesla v100), the values of the ACO parameters
obtained as a result of our approach can be applied for a different equipment
(e.g., Tesla k20s), as well as when implementing a sequential version of the algo-
rithm on the CPU, since ACO parameter values are device-independent. ACO
is a stochastic algorithm. On the one hand, the α, β, ρ parameters of the algo-
rithm are not associated with a specific implementation, so they are architecture-
independent. On the other hand, with an increase in the number of threads, the
probability of finding a solution, and, consequently, the speed of the algorithm,
increases. Therefore, improving the implementation for a particular target ar-
chitecture allows to additionally increase the speed of finding the solution.

While the Const Approach achieves eventually the best performance, it re-
quires the most investigation time due to multiple repetitions of Random Ap-
proach with narrowing of the parameter value intervals. MultiConst approach
can significantly reduce the investigation time, but its results are applicable
only for the parallel implementation of the algorithm. Our approach can be used
for tuning other metaheuristic algorithms and for other applied problems based
constraint satisfiability.

Acknowledgements

We are grateful to the anynymous reviewers for their very helpful comments,
and to the Nvidia Corp. for the donated hardware used in our experiments.
This work was supported by the DAAD (German Academic Exchange Service)
and by the Ministry of Education and Science of the Russian Federation under
the ”Mikhail Lomonosov II”-Programme, and by the HPC2SE project of BMBF
(Federal Ministry of Education and Research, Germany).



14 Andrey Borisenko and Sergei Gorlatch

References

1. Barbosa, E., Senne, E.: Improving the Fine-Tuning of Metaheuristics: An Approach
Combining Design of Experiments and Racing Algorithms. Journal of Optimization
2017, 1–7 (Feb 2017). https://doi.org/10.1155/2017/8042436

2. Birattari, M.: Tuning Metaheuristics, Studies in Computational Intelli-
gence, vol. 197. Springer Berlin Heidelberg, Berlin, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00483-4

3. Borisenko, A., Gorlatch, S.: Parallelizing Metaheuristics for Optimal Design of Mul-
tiproduct Batch Plants on GPU. In: Lecture Notes in Computer Science, vol. 10421
LNCS, pp. 405–417. Springer Nature (Feb 2017). https://doi.org/10.1007/978-3-
319-62932-2 39

4. Borisenko, A., Gorlatch, S.: Comparing GPU-parallelized metaheuristics to branch-
and-bound for batch plants optimization. The Journal of Supercomputing pp. 1–13
(Jul 2018). https://doi.org/10.1007/s11227-018-2472-9

5. Borisenko, A., Haidl, M., Gorlatch, S.: A GPU parallelization of branch-and-bound
for multiproduct batch plants optimization. The Journal of Supercomputing 73(2),
639–651 (Feb 2017). https://doi.org/10.1007/s11227-016-1784-x

6. Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of ir-
regular programs on GPUs. In: 2012 IEEE International Sym-
posium on Workload Characterization (IISWC). pp. 141–151.
IEEE (Nov 2012). https://doi.org/10.1109/IISWC.2012.6402918,
http://ieeexplore.ieee.org/document/6402918/

7. Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic
fuzzy logic parameter tuning in Ant Colony Optimization and its application in
fuzzy control of a mobile robot. Applied Soft Computing 28, 150–159 (Mar 2015).
https://doi.org/10.1016/j.asoc.2014.12.002

8. Chen, C.C., Liu, Y.T.: Enhanced Ant Colony Optimization with Dynamic Mu-
tation and Ad Hoc Initialization for Improving the Design of TSK-Type Fuzzy
System. Computational Intelligence and Neuroscience 2018, 1–15 (Jan 2018).
https://doi.org/10.1155/2018/9485478

9. Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel Ant Colony Optimiza-
tion on Graphics Processing Units. Journal of Parallel and Distributed Computing
73(1), 52–61 (Jan 2013). https://doi.org/10.1016/j.jpdc.2012.01.003

10. Dorigo, M., Birattari, M.: Ant colony optimization. In: Encyclopedia of machine
learning, pp. 36–39. Springer (2011). https://doi.org/10.1007/978-1-4899-7687-1 -
22

11. Dorigo, M., Stützle, T.: Ant Colony Optimization: Overview and Recent Ad-
vances. In: Handbook of metaheuristics, pp. 311–351. Springer (Sep 2018).
https://doi.org/10.1007/978-3-319-91086-4 10

12. Fallahi, M., Amiri, S., Yaghini, M.: A parameter tuning methodology for meta-
heuristics based on design of experiments. International Journal of Engineering
and Technology Sciences 2(6), 497–521 (Dec 2014)

13. Gómez-Cabrero, D., Ranasinghe, D.N.: Fine-tuning the Ant Colony System Al-
gorithm through Particle Swarm Optimization. arXiv preprint arXiv:1803.08353
(Mar 2018)

14. Han, T.D., Abdelrahman, T.S.: Reducing branch divergence in GPU programs. In:
Proceedings of the Fourth Workshop on General Purpose Processing on Graphics
Processing Units - GPGPU-4. pp. 1–3. ACM, ACM Press, New York (Mar 2011).
https://doi.org/10.1145/1964179.1964184



Ant Colony Metaheuristic Tuning 15

15. Khan, S., Bilal, M., Sharif, M., Sajid, M., Baig, R.: Solution of n-Queen problem
using ACO. In: 2009 IEEE 13th International Multitopic Conference. pp. 1–5.
IEEE (Dec 2009). https://doi.org/10.1109/INMIC.2009.5383157

16. Li, P., Zhu, H.: Parameter Selection for Ant Colony Algorithm Based
on Bacterial Foraging Algorithm. Mathematical Problems in En-
gineering 2016, 1–12 (2016). https://doi.org/10.1155/2016/6469721,
https://www.hindawi.com/journals/mpe/2016/6469721/

17. Mahi, M., Baykan, Ö.K., Kodaz, H.: A new hybrid method based on Parti-
cle Swarm Optimization, Ant Colony Optimization and 3-Opt algorithms for
Traveling Salesman Problem. Applied Soft Computing 30, 484–490 (May 2015).
https://doi.org/10.1016/j.asoc.2015.01.068

18. Maier, H.R., Simpson, A.R., Zecchin, A.C., Foong, W.K., Phang, K.Y., Seah, H.Y.,
Tan, C.L.: Ant colony optimization for design of water distribution systems. Jour-
nal of water resources planning and management 129(3), 200–209 (2003)

19. NVIDIA Corporation: CUDA C programming guide 10.0 (Oct 2018),
http://docs.nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf

20. NVIDIA Corporation: The NVIDIA CUDA random number generation library
(cuRAND) (Dec 2018), https://developer.nvidia.com/curand

21. Olivas, F., Valdez, F., Castillo, O.: Dynamic parameter adaptation in Ant Colony
Optimization using a fuzzy system for TSP problems. In: IFSA-EUSFLAT. pp.
765–770 (2015)

22. Simpson, A., Maier, H., Foong, W., Phang, K., Seah, H., Tan, C.: Selection of
parameters for ant colony optimization applied to the optimal design of water
distribution systems. In: Proc., int. congress on modeling and simulation, Canberra,
Australia. pp. 1931–1936 (2001)

23. Skakov, E.S., Malysh, V.N.: Parameter meta-optimization of metaheuristics of solv-
ing specific NP-hard facility location problem. Journal of Physics: Conference Series
973, 012063 (Mar 2018). https://doi.org/10.1088/1742-6596/973/1/012063

24. Stützle, T., López-Ibáñez, M., Pellegrini, P., Maur, M., Montes de Oca,
M., Birattari, M., Dorigo, M.: Parameter Adaptation in Ant Colony Opti-
mization, pp. 191–215. Springer Berlin Heidelberg, Berlin, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21434-9 8

25. Trindade, Á.R., Campelo, F.: Tuning metaheuristics by sequential optimization of
regression models. arXiv preprint arXiv:1809.03646 pp. 1–22 (Sep 2018)

26. Tsang, E.: Foundations of constraint satisfaction: the classic text. BoD–Books on
Demand (May 2014)

27. Valadi, J., Siarry, P.: Applications of Metaheuristics in Process Engineering.
Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-
319-06508-3, http://link.springer.com/10.1007/978-3-319-06508-3

28. Veluscek, M., Kalganova, T., Broomhead, P.: Improving ant colony optimization
performance through prediction of best termination condition. In: 2015 IEEE In-
ternational Conference on Industrial Technology (ICIT). pp. 2394–2402. IEEE,
IEEE (Mar 2015). https://doi.org/10.1109/icit.2015.7125451

29. Zhang, Z., Feng, Z., Ren, Z.: Approximate termination condition analysis
for ant colony optimization algorithm. In: 2010 8th World Congress on In-
telligent Control and Automation. pp. 3211–3215. IEEE, IEEE (Jul 2010).
https://doi.org/10.1109/wcica.2010.5554984


